A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.

نویسندگان

  • Ajay Kumar Yagati
  • Taek Lee
  • Junhong Min
  • Jeong-Woo Choi
چکیده

We developed a nanoscale memory device consisting of signal-responsive biomaterial, which is capable of switching physical properties (such as electrical/electrochemical, optical, and magnetic) upon application of appropriate electrical signals to perform memory switching. Here, we propose a highly robust surface-confined switch composed of an electroactive cysteine-modified azurin immobilized on an Au hexagonal pattern formed on indium tin oxide (ITO) substrates that can be controlled electrochemically and reversibly converted between its redox states. The memory effect is based on conductance switching, which leads to the occurrence of bistable states and behaves as an extremely robust redox switch in which an electrochemical input is transduced into optical and magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has good stability and excellent reversibility, makes it a promising platform for nonvolatile memory devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant protein-based nanoscale biomemory devices.

Biomolecular computing devices that are based on the properties of biomolecular activities offer a unique possibility for constructing new computing structures. A new concept of using various biomolecules has been proposed in order to develop a protein-based memory device that is capable of switching physical properties when electrical input signals are applied to perform memory switching. To c...

متن کامل

Plasmonic color filters for CMOS image sensor applications.

We report on the optical properties of plasmonic hole arrays as they apply to requirements for plasmonic color filters designed for state-of-the-art Si CMOS image sensors. The hole arrays are composed of hexagonally packed subwavelength sized holes on a 150 nm Al film designed to operate at the primary colors of red, green, and blue. Hole array plasmonic filters show peak transmission in the 40...

متن کامل

Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device

In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes ...

متن کامل

A novel lithography technique for formation of large areas of uniform nanostructures

With nanotechnology becoming widely used, many applications such as plasmonics, sensors, storage devices, solar cells, nano-filtration and artificial kidneys require the structures with large areas of uniform periodic nanopatterns. Most of the current nano-manufacturing techniques, including photolithography, electron-beam lithography, and focal ion beam milling, are either slow or expensive to...

متن کامل

Electro-mechanical sensing in freestanding monolayered gold nanoparticle membranes.

The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2013